MCFM and $p\bar{p} \to W+$ 2 jets at next-to-leading order

John Campbell ANL

In collaboration with:

R. K. Ellis

Overview

- MCFM and NLO programs
- Details of MCFM
- ullet $Wbar{b}$ and $Zbar{b}$ as backgrounds to a Higgs signal
- ullet Implementation of W+2 jets
- Conclusions

MCFM Background

- The Tevatron Run II will be sensitive to processes at the femtobarn level.
- Particularly interesting are final states involving heavy quarks, leptons and missing energy.
- MCFM aims to provide a unified description of such processes at NLO accuracy.
- The extension to NLO is made possible in many cases by the recent calculations of virtual matrix elements involving a vector boson and four partons.
- Similar philosophy, but different approach to Pythia. Whilst Pythia has the advantages of extra radiation (partially included in a NLO calculation) and showering, a fixed order MC may be viewed as theoretically cleaner.
- MCFM version 2.0 is now part of the CDF code repository. Working with experimenters to produce user-friendly input and output, e.g. event ntuples rather than just histograms.

Fixed-order QCD Simulations

There are a variety of next-to-leading order Monte Carlo's available for different hadron-hadron processes:

- Diboson production, e.g. $p\bar{p} \to W^+W^- \to \text{leptons}$.
 - Baur et al. lepton correlations only partially included
 Ohnemus, 1994
 Baur, Han and Ohnemus, 1995, 1996
 - Dixon et al. full correlations, anomalous couplings
 Dixon, Kunszt and Signer, 1999
 - MCFM full correlations, singly-resonant contributions

 JC and Ellis, 1999
- Inclusive jets, $p\bar{p} \to \text{at least } n \text{ jets.}$
 - JETRAD 1 and 2 jets only
 Giele, Glover and Kosower, 1993
 - Giele, Kilgore 3 jet production Giele, Kilgore, 2000

Fixed-order QCD Simulations

- Vector boson + heavy flavours
 - MCFM $p\bar{p} \to W^{\pm}g^{\star}(\to b\bar{b})$ Ellis and Veseli, 1998
 - ullet MCFM par p o Zbar b
- Vector boson + jets
 - DYRAD handles vector boson + 0 or 1 jets
 Giele, Glover and Kosower, 1993
 - ullet VECBOS handles vector boson + up to 3~(Z)
 - or 4 (W) jets at leading order only

Berends, Kuijf, Tausk and Giele, 1991

There are also many leading-order options available:

- Numerous Monte Carlo's
- COMPHEP Model \rightarrow Matrix Elements \rightarrow X-sections
- MADGRAPH just matrix elements

MCFM Process List - v. 3.0

Included at NLO

$$egin{align} par p
ightarrow W^\pm/Z & par p
ightarrow W^\pm+W^- \ par p
ightarrow W^\pm+Z & par p
ightarrow Z+Z \ par p
ightarrow W^\pm/Z+H & par p
ightarrow W^\pm/Z+1 ext{ jets } \ par p
ightarrow W^\pm/Z+g^\star \left(
ightarrow bar b
ight) & "par p
ightarrow W+2 ext{ jets } " \ \end{array}$$

- Various leptonic and/or hadronic decays of the bosons are included as further sub-processes.
- ullet For all processes, agreement between MCFM and other NLO Monte Carlo programs has been obtained, e.g. comparison with DYRAD for W+1 jet.
- W+2 jets process is partially implemented at present, more details later.

No NLO prediction for Z+2 jets is yet available, but implementation is in progress and will be completed soon.

Studies using W + jets

- ullet Understanding of QCD (small backgrounds, high Q^2)
 - → Inclusive cross-section normalization
 - → Jet spectrum
 - → Jet algorithms
 - \longrightarrow Measurement of α_S

The transverse energy distribution of the n-th highest energy jet in W+n jet events, for CDF data and leading order theory (VECBOS+HERWIG).

Background for top, SUSY particle, . . . production

Monte Carlo Ingredients - 1

Helicity amplitudes for the virtual and real ME's

• Many of the NLO matrix elements are obtained by crossing the ones calculated for $e^+e^- \rightarrow 4$ jets.

Bern, Dixon, Kosower and Weinzierl, Nucl. Phys. **B489** (1997) 3 Glover and Miller, Phys. Lett. **B396** (1997) 257 Campbell, Glover and Miller, Phys. Lett. **B409** (1997) 503

Monte Carlo Ingredients - 2

- Singular pieces of the real matrix elements must be identified and cancelled by an appropriate set of counter-terms.
- MCFM uses the dipole method to cancel the infrared divergences between real and virtual contributions.

Catani and Seymour, Nucl. Phys. B485 (1997) 291

$$\sigma_{real}^{m+1} = \int_{(m+1)} (d\sigma_{real} - d\sigma_{counter}) + \int_{(m+1)} d\sigma_{counter}$$

$$= (integrable terms) + \sum_{dipoles} \int_{m} d\sigma \otimes \int_{1} dV_{dipole}$$

where the 1-dimensional integral over the dipoles leads to soft and collinear divergences (poles in ϵ).

• These poles manifestly multiply m-parton ME's and may be cancelled against poles from the loop diagrams.

Higgs search using MCFM

• Studies using LO Monte Carlos and other event generators show that for a Higgs in the mass range of 100-130 GeV, the most promising channels for discovery at Run II are associated Higgs production.

Stange, Marciano, Willenbrock, Phys. Rev. **D49** (1994) 1354, **D50** (1994) 4491

$$p\bar{p} \longrightarrow W(\to e\nu)H(\to b\bar{b})$$

 $p\bar{p} \longrightarrow Z(\to \nu\bar{\nu}, \ell\bar{\ell})H(\to b\bar{b})$

- Particularly interesting in the light of hints from LEP2.
- Backgrounds for the WH signal:

• The signal, Wg^* and WZ backgrounds are calculable at NLO in MCFM, the remainder at LO. The matrix elements require the approximation $m_b=0$.

Results for $Wb\bar{b}$

- Use a set of "standard" cuts from the literature, appropriate for the WH study and MRS98 parton distribution functions.
- $m_{b\bar{b}}$ distribution at LO and NLO, scale of 100 GeV.

• The shape changes very little and the "K-factor" - the ratio of next-to-leading order to leading order - is ≈ 1.5 .

Signal and Backgrounds for $m_H=110~{ m GeV}$

- \bullet Double b-tagging efficiency of $\epsilon_{b\bar{b}}=0.45$
- Extraction of the signal requires detailed knowledge of the normalization and the kinematics of the backgrounds.

Results for $Zb\bar{b}$

- New results include radiative corrections, relevant for a further Higgs search in the channel ZH.
- The required matrix elements are very similar to the $Wbar{b}$ case:

- Diagrams just like $Wb\bar{b}$ (a).
- Two additional types of contribution: Z radiating from the $b\bar{b}$ final state (b) gg initial state - different matrix elements (c).

The gg sub-process

• A $b\bar{b}$ pair with a large invariant mass can be produced by the gg initial state process, without off-shell propagators. This gives rise to a large contribution that is important for searches.

$m_{bar{b}}$ mass distribution for $Zbar{b}$

• For a 'conventional' scale of 100 GeV, there is a large K-factor in the region of interest, around 1.8.

• The entire distribution is changed both in shape and normalization - perhaps suggesting that this scale choice is no longer appropriate (\rightarrow new gg processes).

W+2 jets: similarities

• The W+2 jets process can be viewed as an extension of the already-included $Wb\bar{b}$ and $Zb\bar{b}$ calculations:

extra diagrams arise for the case $q=\mathcal{Q}$

$$ullet \ Zbar b$$
 – contains $gg o Z+qar q$

we also need crossings such as this one

- There are extra parton configurations that we must count, but basically two sub-processes - containing either two or four quarks.
- The contribution from the diagrams that include real radiation must incorporate extra singularities. These are due to more configurations of soft/collinear gluons and, most notably, collinear quark pairs.

W+2 jets at lowest order

• When calculating the matrix elements, it is possible to separate the diagrams by their colour structure: write in terms of C_A , $C_F \longrightarrow \mathbb{N}$.

• With a standard set of cuts, a typical distribution can then be divided into its different colour contributions:

• Leading colour contribution $\propto N$ really is dominant and a good approximation to the total, both in size and shape.

W+2 jets at next-to-leading order

- Why bother with a colour decomposition? Let's look at the NLO decomposition for an answer.
- 2-quark piece:

$$|\mathcal{M}_{NLO}(Vqar{q}gg)|^2 \sim 1 \leftarrow \text{Leading colour} + rac{1}{N^2} + rac{1}{N^4}$$

4-quark piece:

$$\begin{split} |\mathcal{M}_{NLO}(Vq\bar{q}Q\bar{Q})|^2 \sim & \frac{1}{N} \\ & + \frac{1}{N^3} \\ & + \frac{1}{N^2} \times \delta_{qQ} \quad \longleftarrow \text{ (small) identical} \\ & + \frac{1}{N^4} \times \delta_{qQ} \quad \text{ quark contributions} \end{split}$$

- One answer: from a book-keeping point of view, constructing the singular counterterms is simpler when broken into colour structures. Different pieces have different poles, e.g. the "QED" piece $(1/N^4)$ has no gg singularities.
- From this point of view, there is no benefit in the 4-quark matrix elements, so we ignore the colour structure there.

W+2 jets at next-to-leading order

Real answer:

 In order to obtain reasonable Monte Carlo integration errors, the running-time must be long. For example, with a Pentium II 400 and a good, optimized compiler:

2-quark real graphs
$$(1/\frac{1}{N^2}/\frac{1}{N^4}) \sim 40$$
 hours 4-quark real graphs (all colours) ~ 55 hours

 The sub-leading virtual matrix elements take significantly longer to calculate:

2-quark virtual graphs:
$$1 / \frac{1}{N^2} / \frac{1}{N^4}$$
 $\sim 6 / 50 / 18$ hours 4-quark virtual graphs (all colours) ~ 18 hours

- It could be that the sub-leading terms are both small and tedious to calculate. In this case, a separation by colour structure (at least for preliminary runs) seems worthwhile.
- In particular, we may want the leading colour 2-quark piece plus the 4-quark piece, in order to capture the different sub-process kinematics.

NLO by colour structure

• Typical distribution at NLO, using only the 2-quark matrix elements and separating by colour factors.

- Very similar to leading order, sub-leading pieces are greatly suppressed
 - ⇒ leading colour is a good and quick approximation.
- 4-quark piece is not yet completely implemented, but will be very soon.

Scale dependence

 An improved (i.e. less sensitive) dependence on the factorization and renormalization scales is expected at NLO
 and observed here at leading colour.

• In particular, note the change of normalization between two typical choices of scale, soft ~ 30 and hard ~ 100 GeV:

$$\sigma_{LO}$$
 (30 GeV) $\sim 1.9 \times \sigma_{LO}$ (100 GeV) σ_{NLO} (30 GeV) $\sim 1.1 \times \sigma_{NLO}$ (100 GeV)

Future progress

- Most pressing (and imminent) is the completion of the
 4-quark matrix elements
- Extension to Z+2 jets already underway relatively easy once the W case falls into place.
- Phenomenological studies. Plenty of Run I data at the Tevatron to re-analyze, particularly for the \mathbb{Z} . Dialogue with experimenters ongoing.
- Some code optimization may be possible.

Conclusions

- MCFM provides NLO predictions for many femtobarn level processes. Version 2.0 may be downloaded from: http://www-theory.fnal.gov/people/campbell/mcfm.html
- Large radiative corrections to the $Wb\bar{b}$ and $Zb\bar{b}$ processes can significantly change estimates of the backgrounds to the processes $p\bar{p}\to WH$ and $p\bar{p}\to ZH$, which will be important search channels at the Tevatron.
- For W/Z+2 jet production, there are two classes of sub-process: 2-quark and 4-quark. The first of these has been implemented in the W case.
- Monte Carlo running-time is long. However, a fast and reliable approximation is provided by the leading colour contribution.
- Full results will be available soon. Many applications, from testing our understanding of QCD to new particle searches.

